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Abstract
In the field of music psychology, a groove is de-
scribed as a multifaceted participatory experience 
linked with the concepts of immersion, desire to 
move, positive affect, and social connection. While 
several intra- and extra-musical features have been 
reported to influence groove experiences in the pre-
vious literature, it is still unclear how groove music 
is processed in the brain. In the current electroen-
cephalogram (EEG) study, 8 participants listened 
to naturalistic stimuli differing in level of a groove 
(high, mid, low) while they were instructed to sit 
still. Subjective groove ratings (wanting to move, en-
joyment, and familiarity) were also collected. In line 
with previous literature, we hypothesized that stimuli 
that received higher as opposed to lower groove rat-
ings would induce larger Mu oscillations as an indi-
cator of greater motor inhibition during the passive 
listening task. Results of the spectral analysis showed 
no difference in Mu power to stimuli with different 
groove levels. Yet, this finding should be approached 
with care. We propose that 1) further data collec-
tion, 2) consideration of different stimuli selection, 
3) simultaneous movement measures, 4) alternative 
analysis, and (5) design approaches might be neces-
sary for future research in understanding the com-
plex nature of groove experiences and how they are 
processed in the brain.

Introduction
Groove is associated with experiences of im-

mersion, desire to move, positive affect, and so-
cial connection (Duman et al., 2021). Previous 
literature has reported several intra- and extra-
musical variables associated with the experi-
ence of groove. Tempo (Etani et al., 2018), pitch 
(Hove et al., 2020; Stupacher et al., 2016), rhyth-
mic (Fitch, 2016; Madison et al., 2011; Witek et 
al., 2014, 2017), and harmonic (Matthews et al., 
2019) complexity as well as familiarity (Senn et 

al., 2018), musical preferences (Senn, Rose, et 
al., 2019) and musicianship (Senn, Bechtold, et 
al., 2019; Witek et al., 2017) are among the vari-
ables that influence the experience of groove. 

A few studies have investigated groove with 
a neuroscientific approach. Increased neuro-
scientific understanding of groove could lead 
to implementation in specific groups of indi-
viduals, for instance to create clinical advice 
concerning patients with Parkinson’s Disease 
(Hove & Keller, 2015; Nombela et al., 2013). 
Some studies explained groove within a pre-
dictive coding framework and proposed the 
groove experience as part of brain function that 
facilitates successful predictions (Stupacher et 
al., 2022; Vuust et al., 2018; Vuust, 2018). More 
specifically, in a functional magnetic resonance 
imaging (fMRI) study, Matthews et al. (2020) 
reported rhythms with medium complexity to 
result in higher groove ratings and linked with 
reward, motor and beat perception-related 
brain regions. In another fMRI study, Engel et 
al. (2022) found that listening to ‘in sync’ sam-
ba percussion excerpts (produced by various 
instruments) activated motor-related brain re-
gions and reinforced audio-motor links (com-
pared with ‘out of sync’ excerpts). They further 
propose this motor activity as foundational for 
the experience of groove. 

An electroencephalogram (EEG) study 
(Cameron et al., 2019) reported stronger neu-
ral entrainment towards rhythms produced by 
humans, which correlated positively with a de-
sire to move ratings (compared with mechani-
cal versions created with precise timings using 
MIDI samples). These findings were interpreted 
as suggesting an interaction between low-level 
stimulus features with high-level cognitive pro-
cessing and groove as a complex musical expe-
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rience. In a transcranial magnetic stimulation 
(TMS) study, Stupacher et al. (2013) found that 
listening to high-groove music activated mo-
tor systems to a greater extent than low-groove 
music. Importantly, activation of motor areas 
(even during motor planning and an absence 
of overt movements) is suggested to support 
the processing of auditory information (Patel & 
Iversen, 2014). 

A recent study demonstrated enhanced Mu 
activity during passive music listening, which 
is believed to reflect motor inhibition (Ross et 
al., 2022). Neural activity around beta (13–30 
Hz) and Mu bands (near somatosensory areas 
around 8–12 Hz and its harmonics 18–22 Hz) 
are known to be involved in sensory-motor 
processing (Engel & Fries, 2010; Khanna & 
Carmena, 2015). Specifically, one study (Maza-
heri et al., 2009) described Mu activation as an 
indicator of inhibition of motor activity. Anoth-
er study (Pfurtscheller, 1981) reported that beta 
desynchronization in central brain regions is 
involved in the activation of the sensory-motor 
cortex and is an indicator of voluntary move-
ment. In contrast, using EEG and electromy-
ography (EMG), a recent study (Nijhuis et al., 
2022) reported no influence of musical groove 
on cortico-muscular coherence (measured with 
beta power) during isometric contraction. This 
lack of clarity encourages further research on 
the topic.

Aims and Hypothesis
The aim of this study was to examine Mu 

oscillations to naturalistic stimuli – commer-
cial music recordings – rated from high to 
low groove. To the best of our knowledge, no 
previous study has reported Mu oscillations 
to naturalistic stimuli with varying degrees of 
groove. Thus, the current exploratory work fo-
cuses on investigating cortical Mu activation to 
musical stimuli associated with various levels of 
groove. Greater Mu power was hypothesized for 
the stimuli that received higher groove ratings 
(compared with low groove) as an indicator of 
greater motor inhibition.

Method
Participants

Eight healthy Finnish participants (aged M 
= 25.38, SD = 1.3, 2 female) in good physical 
condition took part in the experiment.

Stimuli

Stimuli were selected in two steps. First, in 
a detailed online survey, participants (N = 105) 
listened to 30 short musical excerpts (from vari-
ous genres of commercial music, with a tempo 
around 120 -/+ 20 bpm) and rated groove-re-
lated items (i.e., wanting to move, enjoyment 
and familiarity) for each excerpt (further details 
about the survey can be found in Duman et al., 
2021, and Duman et al., 2022). Based on these 
groove ratings, 3 stimuli were selected for each 
groove level (low, mid, and high) for the cur-
rent experiment (presented in Table 1). Each of 
the 9 stimuli lasted around 25 seconds and was 
presented 5 times in randomized order.

Table 1. Stimuli with initial wanting to move ratings.

 Artist Song Wanting 
to Move 
Rating

1 Bruno Mars Uptown Frank 4.11

2 Daft Punk Get Lucky 4.05

3 Earth, Wind, & Fire September 4.03

4 Florence the Ma-
chine + Calvin

Say My Name 3.44

5 Lyn Collins Think About It 3.37

6 Gotye Somebody that 
I Used to Know

3.00

7 Stevie Wonder I Just Call to 
Say I Love You

2.96

8 Kaleida Think 2.57

9 Gwen Stefani Cool 2.49

Procedure

The data collection took part in the EEG lab 
of the Department of Music, Art and Culture 
Studies, University of Jyväskylä, Finland. Upon 
arrival, participants were informed about the 
procedure, their rights as participants, and in-
formed consent papers were collected. Partici-
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pants completed a passive listening task while 
wearing an EEG system (BioSemi 64 channels). 
They were seated, asked to listen to the present-
ed stimuli and to try not to move while their 
eyes were fixed on a point in space. The data 
collection took about 25 minutes. Subsequently, 
participants were presented with the stimuli to 
collect ratings of a) enjoyment, b) wanting to 
move, and c) familiarity with each track on a 
5-point Likert scale.

Pre-processing
Data were pre-processed using the EEGLAB 

toolbox (Delorme & Makeig, 2004) in MatLab 
(2019b). Data were filtered using 1 Hz and 50 
Hz high and low pass filters, respectively, refer-
enced to the average of all channels and downs-
ampled to 128 Hz. Next, pre-processed data 
were submitted to independent component 
(IC) analysis (Onton & Makeig, 2006). ICs were 
visually inspected with the help of the IC La
bel function (Pion-Tonachini et al., 2019), and 
a maximum of 10 artifact-like components (in-
cluding eye, muscle, line, and other) among the 
highest-weighted 25 ICs were removed from 
the data. Data were epoched to 11 seconds [-1 
10]. Finally, a baseline correction was applied to 
the epoched data referencing the 1000 millisec-
onds before the sound onset.

Analysis

The pre-processed data were analyzed us-
ing mnepython package (Gramfort et al., 
2013). Spectral decomposition was applied with 
Welch’s method using psd_welch function with 
multitaper (window length set to 4 seconds) to 
investigate spectral power to musical stimuli 
with various levels of groove at the individual 
and group level.

Results
As expected, participants’ groove ratings 

were in line with the initial online experiment. 
In agreement with previous literature findings 
(Madison et al., 2011; Senn et al., 2018), and 
because Pearson’s correlations demonstrated a 
significant relationship, in the initial study, be-

tween ratings of wanting to move and familiar-
ity, r(103) = .63, p < .001, and enjoyment, r(103) 
= .69, p < .001, subsequent analyses were com-
pleted based only on the wanting to move rat-
ings. Figure 1 demonstrates averaged wanting 
to move ratings of the stimuli. While for high-
groove stimuli, a smaller variability across par-
ticipants’ ratings was observed (also reflecting a 
ceiling effect), a greater variability was noticed 
for mid and low-groove stimuli. This could 
indicate the subjective nature of participants’ 
movement experiences.

Figure 1. Wanting to move ratings of the stimuli.

Although according to the previous litera-
ture (such as Ross et al., 2022), a greater Mu 
power to high groove stimuli would be expect-
ed, no difference in Mu power was observed 
for stimuli with different levels of groove in the 
grand averaged spectral decomposition. Figure 
2 shows the power spectral density distribution 
of the data averaged across participants.

Figure 2. Power spectral density representation of 
the stimuli averaged across participants. 

Since there can be inter-subject variation 
in spectral characteristics of the EEG signal 
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(Croce et al., 2020), the data were also inspected 
on an individual level. The individual spectral 
decompositions demonstrated various patterns, 
as presented in Figure 3. Still, no relationship 
between subjective groove ratings and Mu ac-
tivity was detected. 

Discussion
Overall, the current study’s results might be 

similar to the null findings of Nijhuis et al.’s re-
search (2022), indicating no influence of differ-
ent levels of groove stimuli on Mu oscillations. 
However, additional data and other analytical 

Figure 3. Power spectral density representation of the stimuli of individual participants.
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investigations might be required before pursu-
ing such a conclusion. Therefore, we propose 
the following limitations and potential adjust-
ments to be considered for future research.

First, the lack of evidence for the hypothesis 
could be due to stimuli selection. As seen in 
Figure 1, some participants also gave high rat-
ings to low-groove stimuli. A set of stimuli that 
differ clearly in terms of groove ratings might 
be crucial. Second, previous literature revealed 
that high-groove music influences postural 
sway (Ross et al., 2016). Thus, quantifying body 
movements during a passive listening task (such 
as via simultaneous motion capture measure-
ment) might be necessary to control the move-
ment of participants. Third, similar to the study 
by Ross et al. (2022), a localizing analysis could 
be carried out in order to ensure the source of 
Mu oscillations is auditory and motor-related 
brain regions. For this, a change in experimen-
tal design might be needed to detect each par-
ticipant’s motor and auditory brain regions.

Furthermore, it is known that there are indi-
vidual differences in neuronal responses across 
participants (Croce et al., 2020) as well as in 
terms of the music that participants want to 
move to (Duman et al., 2022). Therefore, future 
research could consider carrying out the analy-
sis individually rather than a grand averaged 
group analysis. Finally, a groove is described 
as a personal experience (Duman et al., 2021) 
related to several factors (Senn, Bechtold, et 
al., 2019). In addition, there is a consideration 
of different kinds of groove experiences in the 
groove literature (Duman et al., 2021; Keil, 
1995). Thus, future research could consider 
the possibility of different groove experiences 
across participants depending on selected stim-
uli. In conclusion, careful experimental designs 
are crucial while investigating the brain’s pro-
cessing of naturalistic groove stimuli.
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